unlocking the potential of hops

ADVANCES IN HOP AROMA RESEARCH – HOW MUCH DO WE KNOW TODAY ?

unlocking the potential of hops

Agenda

- Hop aroma from hops to beer
- How to assess aroma activity?
- How much do we know today?
- Other factors to consider
- Putting the pieces together

FACOTRS INFLUENCING HOP AROMA

barth nnovations

unlocking the potential of hops)

aroma in hops

to hoppy aroma in beer

unlocking the potential of hops

Agenda

- Hop aroma from hops to beer
- How to assess aroma activity?
- How much do we know today?
- Other factors to consider
- Putting the pieces together

unlocking the potential of hops

Aroma activity value = <u>concentration of compound</u>

threshold value

- Threshold values of volatiles have a high standard deviation
- There is no linear context for aroma activity
- > A characteristic aroma is caused by a complex mixture of volatiles
- Additive, masking, synergistic, adaption, saturation effects change perception
- Quality of aroma changes according to configuration, concentration, individual perception, and matrix of the food
- Aroma is connected with emotions

HOW DID HOP AROMA RESEARCH

CHANGE OVER TIME ?

barth nnovations

- How has brewing and hopping practice changed ?
- Which tools are available today for analysis ?
- > What is the right approach for sensory evaluation ?
- How do hop varieties from the past compare to the varieties today ?
- What varieties will be important in the future ?

US 1990	Germany 1990	US 2012	Germany 2012		
Cluster	Hallertauer	Cascade	Perle		
Cascade	Hersbrucker	Willamette	Hallertauer Tradition		
High Alpha	Spalter	Simcoe	Spalter Select		
Willamette	Hüller	Cluster	Hersbrucker		
Tettnanger	Perle	Centennial	Hallertauer Mittelfrüh		
Fuggle	Norther Brewer	CTZ	Tettnanger		
Perle	Orion	Summit	Saphir		
	Tettnanger	Super Galena	Magnum		
		Nugget	Herkules		
		Apollo	Taurus		

HOP OIL COMPONENTS

unlocking the potential of hops

440 COMPOUNDS IDENTIFIED, 1000 + ARE LIKELY !

(Hopfen- vom Anbau bis zum Einsatz in Bier, Hans Carl Verlag)

Substance Group	Concentration
Monoterpenes (myrcene, pinene etc.)	approx. 40 %
Sesquiterpenes (β-caryophyllene, α-humulene)	approx. 40 %
Carboxylicacid-esters (methyl-esters)	approx. 15 %
Carboxylicacids	approx. 1 %
Monoterpenoxides (linalool, geraniol etc.)	approx. 1 %
Sesquiterpenoxides (humullenol II, humulen epoxides)	approx. 1 %
Aldehydes, Ketones (hexenal, epoxydecenal, undecanone, octadienone)	approx.1 %
Aliphatic hydrocarbons	< 1 %
Sulfur containing compounds (4-MMP, 3-M-4-MP)	< 0,1 %
Glycosidically bound aroma compounds	?

	Descriptor	This includes the following aromas:
	Menthol	Mint, melissa, sage, metallic, camphor, pine
	Tea	Green tea, carnomile tea, black tea
Floral	Green fruits	Pear, quince, apple, gooseberry, wine yeast, ethereal, grape
Citrus	Citrus	Grapefruit, orange, lime, lemon, bergamot, lemon grass, ginger, mandarin
Spicy/ Herbal	Green	Green-grassy, tomato leaves, green peppers, nettel, thuja, basil, parsley
	Vegetal	Celeriac, leek, onion, artichoke, garlic, wild garlic
	Cream caramel	Butter, chocolate, yoghurt, gingerbread, honey, cream, caramel, toffee, coffee
Woody	Woody aromatic	Tobacco, cognac, barrique, hay, leather, tonka, woodruff, incense, myrrh, resin
Fruity	Spicy/herbal	Lovage, pepper, chilli, curry, juniper, marjoram, tarragon, dill, lavender, aniseed, liquorice, fennel, thyme, rosemary, clove
Green	Red berries	Cassis, blueberries, raspberries, blackberries, strawberries, redcurrants, forest berries
	Sweet fruits	Banana, watermelon, honeydew melon, peach, apricot, passion fruit, lychee, dried fruit, plum, pineapple, white jelly bears, cherry, kiwi
	Floral	Elderflower, camomile blossom, lily of the valley, jasmine, apple blossom, rose, geranium, carnation, elder

110

unlocking the potential of hops

Agenda

- Hop aroma from hops to beer
- How to assess aroma activity?
- How much do we know today?
- Other factors to consider
- Putting the pieces together

- Peacock 1980; linalool relevant to hop aroma in beer (200 ppb in american beer)
- Peacock 1981; linalool, geraniol, and to a lesser extent geranyl
 isobutyrate are responsible for most of the floral aroma (Cascade hops)
- Lam 1986; geraniol, linalool, and citronellol are mainly responsible for the floral/citrus note
- Kaltner 2000 linalool (R and S) and its flavour contribution by different brewing techniques etc
- Kishimoto 2006; β-ionone 2-phenylethyl 3-methylbutanoate (from fermentation) (floral)
- Takoi 2010; synergistic effect among linalool, geraniol and β-citronellol
- Peacock 2010; the emphasis on linalool has exaggerated the importance
- Van Opstaele 2011; myrcene, 2-undecanone X

- Lam 1986; a grapefruit-like fruity flavor detected in beers brewed with extensively aged hops.
- Kishimoto 2006; (Z)-3-hexen-1-ol in combination with others
- Nielsen 2007; cis-rose oxide, fruity/herbal/lychee (from citronellol?) threshold 0,5-50 ppb, ethyl-2-methylpropionate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl-4-methylpentanoate (threshold 0,1-1ppb) (citrus, apple, pineapple)
- Kishimoto 2006; linalool, ethyl-3-methylbutanoate, ethyl-2methylbutanoate, ethyl-2-methylpropanoate, 4-(4-hydroxyphenyl)- 2butanone (citrus, raspberry), ethyl-4-methylpentanoate, ethyl-3methylbutanoate and ethyl-4-methylpentanoate

- > All thiols show very low sensory thresholds, chemically labile
- Steinhaus, Kishimoto 2006; **4-MMP,** blackcurrant, muscat, boxtree
- Nielsen 2007, 4-MMP, 4-methoxy-2-methyl-2-mercaptobutane, Grapefruit mercaptan
- Kishimoto 2008; 3-mercaptohexan-1-ol, (55 ng/l) is esterified to
 3-mercaptohexyl acetate (5 ng/l)
- Takoi 2009; 3-mercapto-4-methylpentan-1-ol (3-M-4-MP) and 3-mercapto-4-methylpentyl acetate (3-M-4-MPA) (grapefruit, rhubarb, Sauvingon Blanc)

- Peacock 1980; α-terpineol less important, humulenol II in part responsible. Conclusion:
 oxidation products of humulenes collectively are important for a characteristic hoppy aroma ("noble")
- > Tressl et al. 1979; **humulene epoxide I** contributes to hop aroma in beer
- Lam 1986; oxidation products of α-humulene, especially the humulenol I and humulene diepoxides, contribute to the herbal/spicy note in beer.
- Yang, 1993; the total concentration of the identified hydrolysis products of caryophyllene oxide in the beer samples may add to the hop flavour
- Goiris 2002; the approximate flavour threshold of the "**spicy" fraction** in beer, approx. 5 ppb.
- Eyres 2006; intense cedar, woody aroma coming from oxygenated sesquiterpenes, identification challenging
- Eyres 2007, was able to identify 14-hydroxy-ß-caryophyllene as a strong contributor to woody notes
- > Van Opstaele 2011, γ -cadinene, α -calacorene, calarene

unlocking the potential of hops

The key aroma compounds related to hop aroma characteristics in beer

MOST AROMA ACTIVE HOP AROMA

barth nnovations

COMPONENTS IN BEER

Compound	aroma description	threshold in ug/l
4-MMP	muscat, blackcurrant	0,002
3-MHA	muscat, blackcurrant	0,005
3-MH	muscat, blackcurrant	0,05
β-damascenone	apple, peach	0,02
3-M-4-MP	rhubarb, grapefruit	0,07
(E,Z)-2,6-nonadienal	cucumber, green	0,5
cis-rose oxide	fruity, herbal	0,5-50
ß-ionone	floral, violet, berries	0,6
ethyl-4-methylpenatonate	citrus, pineapple	1-18
Sesquisterpenoid essence	spicy resinous	m { } 5
ethyl-2-methylbutanoate	citrus, appel	1-45
linalool	lavendar, floral	h £ 2-80
ethyl-3-methylbutanoate	citrus, appel	2
geraniol	floral, rose	4-300
ethyl-2-methylpropanoate	citrus ,pineapple	6-164
ß-citronellol	lime, lychee	9-40
myrcene	resinous, herbal, green	9-1000

COMPONENTS IN BEER

barth nnovations

unlocking the potential of hops

threshold in ug/l Compound aroma description humulenepoxid I 10 hay (z)-3-hexenal green, leaves 20 4-(4-Hydroxyphenyl)-2-butanone 21 citrus, rasperry floral, lime, citrus 80-500 nerol Humulenol II 150-2500 pineapple, mugwort **ß**-caryophyllene cedar, spicy, cloves 160-420 alpha-terpineol 330 lilac, resinous, rose 1-hexanal 350 green, leaves 1493 citrus, green limonene humulenepoxide II cedar, lime 450 floral, grassy 747 humulene humuladienone 100 geranyl isobutyrate 450 farnesene 550 10000 eudesmol

unlocking the potential of hops

Agenda

- Hop aroma from hops to beer
- How to assess aroma activity ?
- How much do we know today ?
- Other factors to consider
- Putting the pieces together

AROMA INTERACTION IN BINARY MIXTURES

unlocking the potential of hops

µg/l	linalool	geraniol	humulen	caryo.	nerol	terp.	myr.	far.	
linalool	27	104 ^a ; 133 ^b						493 ^c	
geraniol	104a; 133b	90						2304 d	
humulene			3483	4346 ^e	1843 ^f	5668 ^g			
ß-Caryophyllene			4346 ^e	239	147 ^h	1297 ⁱ		Sing	le components Synergism
nerol			1843 ^f	147 ^h	1206	2699 ^j			additive masking
a-Terpineol			5668 ^g	1297 ⁱ	2699 ^j	1076	mys	6 C	
myrcene						· · · · · ·	119	XX	
farnesene	493 ^c	2304 ^d				Æ		2020	
						S	XI -		Hanka 2000

These interactions also occur with fermentation volatiles !

naiine Luuu

WHAT IS THE ROLE OF THE YEAST ?

barth**Innovations**

unlocking the potential of hops

Figure 3. Scheme showing the monoterpenoid biotransformation reactions catalysed by S. cerevisiae, T. delbrueckii and K. lactis

King, 2000, Yeast 2000; 16: p.499±506.

WHAT IS THE ROLE OF THE YEAST ?

barth nnovations

GLYCOSIDICALLY BOUND AROMA COMPONENTS unlocking the potential of hops

- Daenen 2008; pronounced exo-ß-glucanase activity in Saccharomyces brewing yeasts leads to a higher release of certain aglycones. Brettanomyces brewing yeasts hydrolyses glycosidically bound volatiles of hops.
- Ting 2009 ; named 28 hydrolysis products by ß-glucosidase from glycosides

- All hops contain more or less the same components (in different concentrations)
- It is maybe the different composition of low concentration compounds that is responsible for variety unique aroma
- 4-MMP is important for some US and AUS varieties
- Geraniol seems to be more dominant in US varieties
- A higher concentration of sesquiterpenes is typical for European varieties
- Sensory data show the influence of crop years and the growing location
- other thiols seem to be of importance e.g. for Nelson Sauvin and Tomahawk: 2-methylbutyl isobutyrate (apple, apricot), 3-mercapto-4methylpentan-1-ol (3-M-4-MP) and 3-mercapto-4-methylpentyl acetate (3-M-4-MPA) (grapefruit, rhubarb, Sauvigngon Blanc)

THE IMPORTANCE OF LINALOOL TO HOP AROMA UNLOCKING the potential of hops

Results of organoleptic evaluation and preference of beer samples

WHAT COMPOUNDS ARE IMPORTANT IN OTHER barth novations

FRUITS (HERBS)?

white wine	3-mercapto-hexan-1-ol 3-mercaptohexylacetate ethyl-2-methyl-propanoate 4-hydroxy-2,5dimethyl 3(2h)furanone	4MMP 1-F.7-3-5-undecatriene	orange juice	linalool octanal ethyl-2-methylbutanoate limonene α-pinene	ethyl-butanoate myrcene acetaldehyde decanal ß-Damascenone
pine apple juice	ß-damascenone	ethyl-2methyl-butanoate methyl-2methyl-butanoate		ethyl-propanoate ethyl-2-methylpropanoate	
	1-butanol ethyl-2methyl-butanoate	ß-damascenone	durian pulp	3,5-dimethyl-1,2,4- trithiolane	ethane-1.1-dithiol
	ethyl-butanoate dimethylsulfid	hexanal 1-hexanol	passion fruit	2-methyl-4-propyl-1,3- oxathiane	3-mercapto-1-hexanol
apple juice	v-decalactone	1-octen-3one			
	β-damascenone δ-decalactone	ß-ionone 1-octen-3-one		β-citronellol ethyl isobutyrate	
	Linalool E,Z,2-6-nondienal 7.1.5. octadion 2. ono	hexyl-acetate gamma-dodecalactone acetaldebyde		β-damascenone furaneol linalool	cis-rose oxide ethyl-isohexanoate isoamulacotato
apricots	(z)-3-hexanal	3-methyl-2,4-nonandione	lychee	geraniol	isobutyl acetate

unlocking the potential of hops

Agenda

- Hop aroma from hops to beer
- How to assess aroma activity ?
- How much do we know today ?
- Other factors to consider
- Putting the pieces together

- Over the last 30 years a lot of data on hop aroma (in beer) has been collected
- still unknown/unidentified components
- No single character impact compound, complex mixture of components
- Genes, climate and location influence the composition and aroma
- Numerous components in beer have been identified and can be attributed to certain aroma characteristics
- Certain variety aroma characteristics (in beer) cannot be explained currently
- aroma interaction, configuration, reactivity of compounds, changes in concentration can have a big aroma (flavour) impact in beer

- More emphasis on correlating aroma analysis with sensory assessment
- > Human aroma perception should be included in research
- Combine research efforts
- Single variety beers with standardised brewing process
- Standardised sensory assessment (one language) of hops and hoppy beers
- Every hop variety basically merits its own research

unlocking the potential of hops

....WE KNOW A LOT, BUT NOT ENOUGH! THE FUTURE OF HOP AROMA RESEARCH LOOKS BRIGHT !

Acknowlegdements to:

Georg Drexler Elisabeth Wiesen Andreas Gahr Mark Zunkel Keith Westwood Tim Kostelecky Simon Whittock

For collectively trying to unravel the mystery of hop aroma and to all passionist brewers that use a lot of hops !

CHRISTINA.SCHOENBERGER@JOHBARTH.DE